admin 發表於 2024-4-24 18:08:15

计算機毕設選题 基于深度學習的疲劳駕驶檢测

import cv2
import dlib
import numpy as np
from imutils import face_utils
"""
思绪:
第一步:2D人脸关頭點檢测;第二步:3D人脸模子匹配;
第三步:求解3D點和對應2D點的轉换瓜葛;第四步:按照扭轉矩阵求解欧拉角。
"""

# 加载人脸檢测和姿式估量模子(dlib)
face_landmark_path = 'D:/myworkspace/JupyterNotebook/fatigue_detecting/model/shape_predictor_68_face_landmarks.dat'

"""
只要晓得世界坐標系内點的位置、像素坐標位置和相機参数便可以搞定扭轉和平移矩阵(OpenCV自带函数solvePnp())
"""

# 世界坐標系(UVW):填写3D参考點,该模子参考
object_pts = np.float32([,#33左眉左上角
,#29左眉右角
[-1.330353, 7.122144, 6.903745], #34右眉左角
[-6.825897, 6.760612, 4.402142], #38右眉右上角
,#13左眼左上角
,#17左眼右上角
[-1.789930, 5.393625, 4.413414], #25右眼左上角
[-5.311432, 5.485328, 3.987654], #21右眼右上角
,#55鼻子左上角
[-2.005628, 1.409845, 6.165652], #49鼻子右上角
, #43嘴左上角
[-2.774015, -2.080775, 5.048531],#39嘴右上角
, #45嘴中心下角
])#6下巴角

# 相機坐標系(XYZ):添加相機内参
K = [6.5308391993466671e+002, 0.0, 3.1950000000000000e+002,
0.0, 6.5308391993466671e+002, 2.3950000000000000e+002,
0.0, 0.0, 1.0]# 等價于矩阵
# 图象中間坐標系(uv):相機畸變参数
D =

# 像素坐標系(xy):填写凸轮的本征和畸變系数
cam_matrix = np.array(K).reshape(3, 3).astype(np.float32)
dist_coeffs = np.array(D).reshape(5, 1).astype(np.float32)

# 從新投影3D點的世界坐標轴以驗證成果姿式
reprojectsrc = np.float32([,
,
,
,
[-10.0, 10.0, 10.0],
[-10.0, 10.0, -10.0],
[-10.0, -10.0, -10.0],
[-10.0, -10.0, 10.0]])
# 绘制正方體12轴
line_pairs = [, , , ,
, , , ,
, , , ]

def get_head_pose(shape):
# 填写2D参考點,注释遵守
"""
17左眉左上角/21左眉右角/22右眉左上角/26右眉右上角/36左眼左上角/39左眼右上角/42右眼左上角/
4減肥茶,5右眼右上角/31鼻子左上角/35鼻子右上角/48左上角/54嘴右上角/57嘴中心下角/8下巴角
"""
# 像素坐標调集
image_pts = np.float32(, shape, shape, shape, shape,
shape, shape, shape, shape, shape,
shape, shape, shape, shape])
"""
用solvepnp或sovlepnpRansac,输入3d點、2d點、相機内参、相機畸變,输出r、t以後
用projectPoints,输入3d點、相機内参、相機畸變、r、t,输出重投影2d點
计较原2d點和重投影2d點的間隔作為重投影偏差
"""
# solvePnP计较姿式——求解扭轉和平移矩阵:
# rotation_vec暗示扭轉矩阵,translation_vec暗示平移矩阵,cam_matrix與K矩阵對應,dist_coeffs與D矩阵對應。
_, rotation_vec, translation_vec = cv2.solvePnP(object_pts, image_pts, cam_matrix, dist_coeffs)
# projectPoints從新投影偏差
reprojectdst, _ = cv2.projectPoints(reprojectsrc, rotation_vec, translation_vec, cam_matrix,dist_coeffs)

reprojectdst = tuple(map(tuple, reprojectdst.reshape(8, 2)))# 以8行2列显示

# 计较欧拉角calc euler angle
# 参考
rotation_mat, _ = cv2.Rodrigues(rotation_vec)#罗德里格斯公式(将扭轉矩阵轉换為扭轉向量)
pose_mat = cv2.hconcat((rotation_mat, translation_vec))# 程度拼接,vconcat垂直拼接
# eulerAngles –可選的三元素矢量,包括三個以度為单元的欧拉扭轉角度
_, _, _, _, _, _, euler_angle = cv2.decomposeProjectionMatrix(pose_mat)# 将投影矩阵分化為扭轉矩阵和相機矩阵

return reprojectdst, euler_angle

def main():
# return
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Unable to connect to came山楂茶,ra.")
return
# 檢测人脸
detector = dlib.get_frontal_face_detector()
# 檢测第一小我脸的关頭點
predictor = dlib.shape_predictor(face_landmark_path)

while cap.isOpened()腰酸背痛止痛,:
ret, frame = cap.read()
if ret:
face_rects = detector(frame, 0)

if len(face_rects) > 0:
# 轮回面部位置信息,利用predictor(gray, rect)得到面部特性位置的信息
shape = predictor(frame, face_rects)
# 将面部特性信息轉换為数组array的格局
瘦肚子方法,shape = face_utils.shape_to_np(shape)
# 获得頭部姿态
reprojectdst, euler_ang日貨百貨推薦,le = get_head_pose(shape)
pitch = format(euler_angle)
yaw = format(euler_angle)
roll = format(euler_angle)
print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))

# 標出68個特性點
for (x, y) in shape:
cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)

# 绘制正方體12轴
for start, end in line_pairs:
cv2.line(frame, reprojectdst, reprojectdst, (0, 0, 255))
# 显示角度成果
cv2.putText(frame, "X: " + "{:7.2f}".format(euler_angle), (20, 20), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)
cv2.putText(frame, "Y: " + "{:7.2f}".format(euler_angle), (20, 50), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)
cv2.putText(frame, "Z: " + "{:7.2f}".format(euler_angle), (20, 80), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)

# 按q退出提醒
cv2.putText(frame, "Press 'q': Quit", (20, 450),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (84, 255, 159), 2)
# 窗口显示 show with opencv
cv2.imshow("Head_Posture", frame)

if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 開释摄像頭 release camera
cap.release()
# do a bit of cleanup
cv2.destroyAllWindows()

if __name__ == '__main__':
main()
頁: [1]
查看完整版本: 计算機毕設選题 基于深度學習的疲劳駕驶檢测