新北市學車交流論壇

標題: 计算機毕設選题 基於深度學習的疲劳駕驶檢測 [打印本頁]

作者: admin    時間: 2024-8-21 17:39
標題: 计算機毕設選题 基於深度學習的疲劳駕驶檢測
  1. import cv2
  2. import dlib
  3. import numpy as np毛孔清潔棒,
  4. from imutils import face_utils
  5. """
  6. 思绪:
  7. 第一步:2D人脸關頭點檢測;第二步:3D人脸模子匹配;
  8. 第三步:求解3D點和對應2D點的转換瓜葛;第四步:按照扭转矩阵求解欧拉角。
  9. """

  10. # 加载人脸檢測和姿式估量模子(dlib)
  11. face_landmark_path = 'D:/myworkspace/JupyterNotebook/fatigue_detecting/model/shape_predictor_68_face_landmarks.dat'

  12. """
  13. 只要晓得世界坐標系内點的位置、像素坐標位置和相機参数便可以搞定扭转和平移矩阵(OpenCV自带函数solvePnp())
  14. """

  15. # 世界坐標系(UVW):填寫3D参考點,该模子参考
  16. object_pts = np.float32([[6.825897, 6.760612, 4.402142],  #33左眉左上角
  17. [1.330353, 7.122144, 6.903745],  #29左眉右角
  18. [-1.330353, 7.122144, 塑形背心,6.903745], #34右眉左角
  19. [-6.825897, 6.760612, 4.402142], #38右眉右上角
  20. [5.311432, 5.485328, 3.987654],  #13左眼左上角
  21. [1.789930, 5.393625, 4.413414],  #17左眼右上角
  22. [-1.789930, 5.393625, 4.413414], #25右眼左上角
  23. [-5.311432, 5.485328, 3.987654], #21右眼右上角
  24. [2.005628, 1.409845, 6.165652],  #55鼻子左上角
  25. [-2.005628, 1.409845, 6.165652], #49鼻子右上角
  26. [2.774015, -2.080775, 5.048531], #43嘴左上角
  27. [-2.774015, -2.080775, 5.048531],#39嘴右上角
  28. [0.000000, -3.116408, 6.097667], #45嘴中心下角
  29. [0.000000, -7.415691, 4.070434]])#6下巴角

  30. # 相機坐標系(XYZ):添加相機内参
  31. K = [6.5308391993466671e+002, 0.0, 3.1950000000000000e+002,
  32. 0.0, 6.5308391993466671e+002, 2.3950000000000000e+002,
  33. 0.0, 0.0, 1.0]# 等价於矩阵[fx, 0, cx; 0, fy, cy; 0, 0, 1]
  34. # 图象中間坐標系(uv):相機畸變参数[k1, k2, p1, p2, k3]
  35. D = [7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000]

  36. # 像素坐標系(xy):填寫凸轮的本征和畸變系数
  37. cam_matrix = np.array(K).reshape(3, 3).astype(np.float32)
  38. dist_coeffs = np.array(D).reshape(5, 1).astype(np.float32)

  39. # 從新投影3D點的世界坐標轴以验證成果姿式
  40. reprojectsrc = np.float32([[10.0, 10.0, 10.0],
  41. [10.0, 10.0, -10.0],
  42. [10.0, -10.0, -10.0],
  43. [10.0, -10.0, 10.0],
  44. [-10.0, 10.0, 10.0],
  45. [-10.0, 10.0, -10.0],
  46. [-10.0, -10.0, -10.0],
  47. [-10.0泡腳包,, -10.0, 10.0]])
  48. # 绘制正方體12轴
  49. line_pairs = [[0, 1], [1, 2], [2, 3], [3, 0],
  50. [4, 5], [5, 6], [6, 7], [7, 4],
  51. [0, 4], [1, 5], [2, 6], [3, 7]]

  52. def get_head_pose(shape):
  53. # 填寫2D参考點,注释遵守
  54. """
  55. 17左眉左上角/21左眉右角/檬山楂脂流茶,22右眉左上角/26右眉右上角/36左眼左上角/39左眼右上角/42右眼左上角/
  56. 45右眼右上角/31鼻子左上角/35鼻子右上角/48左上角/54嘴右上角/57嘴中心下角/8下巴角
  57. """
  58. # 像素坐標调集
  59. image_pts = np.float32([shape[17], shape[21], shape[22], shape[26], shape[36],
  60. 治療痛風噴劑推薦,   shape[39], shape[42], shape[45], shape[31], shape[35],
  61. shape[48], shape[54], shape[57], shape[8]])
  62. """
  63. 用solvepnp或sovlepnpRansac,输入3d點、2d點、相機内参、相機畸變,输出r、t以後
  64. 用projectPoints,输入3d點、相機内参、相機畸變、r、t,输出重投影2d點
  65. 计较原2d點和重投影2d點的間隔作為重投影偏差
  66. """
  67. # solvePnP计较姿式——求解扭转和平移矩阵:
  68. # rotation_vec暗示扭转矩阵,translation_vec暗示平移矩阵,cam_matrix與K矩阵對應,dist_coeffs與D矩阵對應。
  69. _, rotation_vec, translation_vec = cv2.solvePnP(object_pts, image_pts, cam_matrix, dist_coeffs)
  70. # projectPoints從新投影偏差
  71. reprojectdst, _ = cv2.projectPoints(reprojectsrc, rotation_vec, translation_vec, cam_matrix,dist_coeffs)

  72. reprojectdst = tuple(map(瘦身食品,tuple, reprojectdst.reshape(8, 2)))# 以8行2列显示

  73. # 计较欧拉角calc euler angle
  74. # 参考
  75. rotation_mat, _ = cv2.Rodrigues(rotation_vec)#罗德里格斯公式(将扭转矩阵转換為扭转向量)
  76. pose_mat = cv2.hconcat((rotation_mat, translation_vec))# 程度拼接,vconcat垂直拼接
  77. # eulerAngles –可選的三元素矢量,包括三個以度為单元的欧拉扭转角度
  78. _, _, _, _, _, _, euler_angle = cv2.decomposeProjectionMatrix(pose_mat)# 将投影矩阵分化為扭转矩阵和相機矩阵

  79. return reprojectdst, euler_angle

  80. def main():
  81. # return
  82. cap = cv2.VideoCapture(0)
  83. if not cap.isOpened():
  84. print("Unable to connect to camera.")
  85. return
  86. # 檢測人脸
  87. detector = dlib.get_frontal_face_detector()
  88. # 檢測第一小我脸的關頭點
  89. predictor = dlib.shape_predictor(face_landmark_path)

  90. while cap.isOpened():
  91. ret, frame = cap.read()
  92. if ret:
  93. face_rects = detector(frame, 0)

  94. if len(face_rects) > 0:
  95. # 轮回面部位置信息,利用predictor(gray, rect)得到面部特性位置的信息
  96. shape = predictor(frame, face_rects[0])
  97. # 将面部特性信息转換為数组array的格局
  98. shape = face_utils.shape_to_np(shape)
  99. # 获得頭部姿态
  100. reprojectdst, euler_angle = get_head_pose(shape)
  101. pitch = format(euler_angle[0, 0])
  102. yaw = format(euler_angle[1, 0])
  103. roll = format(euler_angle[2, 0])
  104. print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))

  105. # 標出68個特性點
  106. for (x, y) in shape:
  107. cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)

  108. # 绘制正方體12轴
  109. for start, end in line_pairs:
  110. cv2.line(frame, reprojectdst[start], reprojectdst[end], (0, 0, 255))
  111. # 显示角度成果
  112. cv2.putText(frame, "X: " + "{:7.2f}".format(euler_angle[0, 0]), (20, 20), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)
  113. cv2.putText(frame, "Y: " + "{:7.2f}".format(euler_angle[1, 0]), (20, 50), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)
  114. cv2.putText(frame, "Z: " + "{:7.2f}".format(euler_angle[2, 0]), (20, 80), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)

  115. # 按q退出提醒
  116. cv2.putText(frame, "Press 'q': Quit", (20, 450),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (84, 255, 159), 2)
  117. # 窗口显示 show with opencv
  118. cv2.imshow("Head_Posture", frame)

  119. if cv2.waitKey(1) & 0xFF == ord('q'):
  120. break
  121. # 開释摄像頭 release camera
  122. cap.release()
  123. # do a bit of cleanup
  124. cv2.destroyAllWindows()

  125. if __name__ == '__main__':
  126. main()
複製代碼





歡迎光臨 新北市學車交流論壇 (https://bbs.hair999.com.tw/) Powered by Discuz! X3.3